Mar de Dirac

Fazer Ciência

Category Archives: Física

Tópicos de Física Moderna – Parte III

— 6. Introdução à Física Quântica —

Ao contrário do que fizemos nos capítulos anteriores este capítulo fará menção de algumas experiências que motivaram a formulação da Física Quântica. Para além disso as nossas formulações iniciais serão expostas de uma forma menos resumida.

— 6.1. Novos Resultados, Novas Concepções —

Qualquer pessoa que se tenha aproximado de um laboratório e teve que realizar uma experiência sabe que para se poder dizer algo sobre o sistema em estudo é sempre necessário interagir com o sistema. Em linguagem mais respeitável devemos dizer o acto de medição perturba sempre o sistema em estudo.

Para além disso temos também o conceito de estado mecânico. Ora o conceito de estado mecânico pressupõe duas coisas:

  1. A perturbação pode, em princípio (nalguns casos), tornar-se tão pequena quanto se queira. O facto de haver sempre limites é uma propriedade dos instrumentos que se utiliza e não da teoria que serve como base.
  2. Existem algumas perturbações cujo efeito não pode ser desprezado. No entanto é sempre possível fazer um calculo exacto de quais os efeitos e desse modo é possível compensá-los.

Em suma a teoria que até agora desenvolvemos é causal e determinista.

No entanto uma das duas nuvens negras de Kelvin e mais uns quantos outros resultados experimentais mostraram que uma revisão dos conceitos clássicos era necessária:

  • Radiação de corpo negro.
  • Efeito fotoeléctrico.
  • Princípio da combinação de Ritz.
  • Existência e estabilidade de átomos.
  • Experiência de Stern-Gerlach.
  • Difracção de raios de electrões.

Estes resultados experimentais introduziram as seguintes quebras com o paradigma newtoniano:

  • Entidades que tinham uma natureza corpuscular demonstram um comportamento ondulatório.
  • Entidades que tinham uma natureza ondulatória demonstram um comportamento corpuscular.
  • Existe um carácter estatístico (que parece ser) essencial no comportamento da matéria.
  • O carácter atómico da matéria obriga a repensar a natureza do processo de medição: uma vez que existem grandezas cujo valor não pode ser arbitrariamente diminuído uma perturbação tem sempre um valor mínimo que não pode ser melhorado.

— 6.2. A Experiência da Dupla Fenda —

Para tornar mais concreta a discussão anterior vamos olhar com mais cuidado para uma experiência que demonstra muito bem o choque entre as duas concepções que temos vindo a discutir.

— 6.2.1. Duas Fendas e Partículas —

Imaginemos que temos uma situação como a retratada na figura 3 mas desta vez o que incide nas fendas não são ondas mas sim partículas.

DuplaFendaParticulas

\caption{Experiência de dupla fenda com partículas}

Nesta situação as partículas passam pela fenda 1 ou pela fenda 2. As partículas que passam pela fenda 1 são responsáveis pela curva de probabilidades {P_1} enquanto que as partículas que passam pela fenda 2 são responsáveis pela curva de probabilidades {P_2}. A curva de probabilidades resultante {P_{12}} é simplesmente a soma das curvas {P_1} e {P_2}.

— 6.2.2. Duas Fendas e Ondas —

Como já tínhamos visto na secção 3 se fizermos passar uma onda por duas fendas o que se obtém é:

DuplaFendaOndas

\caption{Experiência de dupla fenda com ondas}

Neste caso a intensidade das ondas é a quantidade que interessa estudar. Temos a curva de intensidades {I_1} que é causado pela fenda 1 e a curva de intensidades {I_2} que é causada pela fenda 2. A intensidade resultante no entanto é {I_{12}=|h_1+h_2|^2= I_1+I_2+2I_1I_2 \cos \theta}. O último termo é responsável pela interacção da onda proveniente da fenda 1 com a onda proveniente da fenda 2. Assim sendo é este termo que é responsável pelo padrão de interferência.

— 6.2.3. Duas Fendas e Electrões —

Agora que estamos familiarizados com o comportamento de ondas e partículas vamos estudar o movimento de raios de electrões a passar por duas fendas. Pelo que se sabe dos electrões eles são partículas e como tal esperamos encontrar um comportamento igual ao representado na figura 6. No entanto isto é o que a Natureza tem para nós:

DuplaFendaElectroes

\caption{Experiência de dupla fenda com raios de electrões}

No caso dos electrões temos que novamente pensar em termos de curvas de probabilidades e curvas de probabilidades são inerentes ao conceito de partículas. Contudo o que nós observamos é um padrão de interferências e isso é inerente a ondas…

Para podermos explicar os padrões que vemos temos que assumir que a cada probabilidade {P_i} está associada uma amplitude de probabilidade {\phi_i}. Para calcularmos a probabilidade devemos calcular o módulo quadrado da amplitude de probabilidade {P_i=\phi_i^2}. Assim antes de mais devemos calcular a soma da amplitude de probabilidades de passar pela fenda ou de passar pela fenda 2 e só depois devemos calcular o módulo quadrado desta amplitude para obtermos a probabilidade de um electrão passar pela fenda 1 ou de passar pela fenda 2: {P_{12}=|\phi_1+\phi_2|^2}.

Notar que no parágrafo anterior tratamos o electrão como sendo sempre uma partícula, ainda que seja uma partícula com propriedades muito especiais, e nunca em momento algum o tratamos como sendo uma onda que interfere consigo mesma. Tal tratamento há muito tempo se sabe estar errado, mas, por questões que só podem ser de nostalgia, é frequente encontrá-lo em muitos livros.

— 6.3. Conceitos Básicos e Definições Preliminares —

Após a discussão de alguns dos motivos que levaram os físicos a procurarem um novo paradigma que permitisse fazer sentido do que se passava a nível atómico está na altura de introduzir as nossas habituais definições iniciais.

Definição 40 O estado quântico é definido pela especificação das grandezas físicas relevantes e é representado por uma função que toma valores complexos {\Psi(x,t)}
Definição 41 O momento linear de uma partícula é representado pelo operador

\displaystyle p=\dfrac{\hbar}{i}\dfrac{d}{dx} \ \ \ \ \ (34)

Definição 42 A energia de uma partícula é representada pelo operador

\displaystyle E=i\hbar\dfrac{d}{dt} \ \ \ \ \ (35)

Definição 43 Para uma partícula livre as seguintes equações são válidas:

{\begin{aligned} \label{eq:relacoesdebroglie} k &=& \frac{\hbar}{p}\\ \omega &=& \frac{E}{\hbar} \end{aligned}}

— 6.4. Axiomas da Física Quântica —

Os axiomas que aqui vamos apresentar não são os mais gerais nem os mais convenientes para um tratamento maduro da Física Quântica mas são tudo o que necessitamos para cumprir com o âmbito do curso.

Axioma 10 O estado de um sistemas quântico evolui segundo a equação de Schroedinger:

\displaystyle -\frac{\hbar^2}{2m}\frac{\partial ^2 \Psi}{\partial x^2}+U(x)\Psi= i\hbar\frac{\partial \Psi}{\partial t} \ \ \ \ \ (36)

Axioma 11 A probabilidade de que uma partícula seja encontrada no elemento de espaço {dx} denota-se por {P(x)dx} e é:

\displaystyle P(x)dx=|\Psi(x,t)|^2dx \ \ \ \ \ (37)

Axioma 12 Uma partícula quântica é sempre resultante de interferência construtiva.

A função deste axioma é captar de uma só vez a natureza dual do conceito de partícula em Física Quântica.

Axioma 13 O valor médio de uma grandeza física {A}, que se representa {\bar{A}}, é dado pela seguinte expressão:

\displaystyle \bar{A} = \int \Psi^*A\Psi \ \ \ \ \ (38)

Onde o integral se calcula na região relevante.

— 6.5. Ondas e Partículas —

— 6.5.4. Radiação de Corpo Negro —

Definição 44 Um corpo negro é um objecto que absorve toda a radiação electromagnética que nele incide.

Para explicar o espectro de radiação de um corpo negro Planck assumiu que a parede de uma cavidade era composta por ressoadores microscópicos que vibravam com frequências diferentes. Cada ressoador tinha a sua frequência própria {f} e devia emitir radiação com essa frequência e com qualquer valor de energia. No entanto Planck postulou que a energia de um ressoador só podia ser {E=nhf}. Ou seja que a radiação emitida ou absorvida no interior da cavidade só tomava valores discretos.

Com essa hipótese adicional Planck deduziu uma relação funcional entre a densidade de energia {u} o comprimento de onda da radiação {\lambda} (ou a sua frequência {\nu}) e a temperatura a que se encontra o interior da cavidade que se adequa aos dados experimentais:

{\begin{aligned} u(\lambda,T) & = & \frac{8\pi h c}{\lambda^5(e^{hc/(\lambda K_B T)}-1)}\\ u(\nu,T) & = & \frac{8\pi h \nu ^3}{\nu ^3(e^{h \nu/(K_B T)}-1)} \end{aligned}}

Recorrendo as equações 6 é possível demonstrar que a potência emitida por unidade de área, {e}, por um corpo negro é {e=\sigma T^4}.

Também é possível demonstrar que {\lambda T_{max}=k}. Sendo {k=2.898\times10^3\, \mathrm{mK}}

— 6.5.5. Efeito Fotoeléctrico —

Quando se faz incidir luz monocromática sobre uma superfície metálica observa-se que um certo número de electrões se liberta com uma energia muito bem definida. Para além disso sabemos também que existe uma frequência mínima que faz com que electrões se libertem da placa metálica e que o número de electrões libertados aumenta com o aumento da intensidade da luz mas a sua energia cinética não.

No contexto da teoria electromagnética da luz todos estes factos são inexplicáveis. No entanto se assumirmos que a luz se propaga em pacotes discretos de energia (isto é uma generalização enorme da hipótese de Planck que apenas assumiu que trocas de energia se davam de forma discreta) e que estes pacotes de energia são da forma {E=hf} o efeito fotoeléctrico é prontamente explicado.

A energia cinética dos electrões libertados é dada pela expressão {K=hf-\phi} onde {\phi} representa a energia de ligação dos electrões à placa metálica.

— 6.5.6. Átomo de Bohr —

A existência de átomos é segundo o electromagnetismo um acontecimento impossível. Segundo o electromagnetismo partículas carregadas em movimento acelerado deveriam emitir radiação continuamente.

Uma vez que os electrões orbitam em torno do núcleo o seu movimento é claramente acelerado. Assim sendo os electrões deveriam radiar energia continuamente fazendo com que a sua distância ao núcleo fosse cada vez menor até colidirem com o núcleo. Tal, obviamente, não é o que acontece.

Postulando que os electrões só podem orbitar em torno do núcleos em certas trajectórias( recorrendo ao Axioma 12 podemos demonstrar que nestas trajectórias o momento angular do electrão está restringido a ter valores discretos) podemos explicar a estabilidade dos átomos e prever certos fenómenos que sabemos ocorrer ao nível atómico.

Estes estados do electrão em que ele não pode emitir radiação chamam-se estados estacionários. Para transitar de um estado estacionário para outro estado estacionário o electrão deve emitir ou absorver um fotão e a energia deste fotão deve igualar a diferença de energia entre os estados estacionários.

\displaystyle E_i - E_f = hf \ \ \ \ \ (39)

\displaystyle m_e v r = n\hbar \ \ \ \ \ (40)

Com estas duas equações é possível prever que os raios permitidos dos electrões são da forma:

\displaystyle r_n= \frac{n^2 \hbar ^2}{m_e k e^2} \ \ \ \ \ (41)

Tomando {n=1} temos o raio menor raio possível (o raio de Bohr) que se denota por {a_0}.

E que as energias permitidas são da forma

\displaystyle E_n= - \frac{ke^2}{2a_0 n^2} \ \ \ \ \ (42)

Utilizando as equações 39 e 42 podemos calcular o comprimento de onda do fotão que permite a transição entre estados estacionários

\displaystyle \frac{1}{\lambda}= \frac{ke^2}{2a_0 h c}\left( \frac{1}{n_f^2}-\frac{1}{n_i^2} \right) \ \ \ \ \ (43)

A teoria do átomo de hidrogénio de Bohr também permite explicar o espectro de energia de alguns átomos ionizados.

— 6.5.7. Relação de Incerteza de Heisenberg —

O Axioma 12 diz-nos que para construirmos uma partícula devemos ter um interferência construtiva de ondas. Uma onda é algo que tem uma extensão infinita enquanto que uma partícula não poderia ter uma dimensão mais finita. De modo a obtermos uma partícula através da soma de ondas devemos então somar várias ondas de modo a que a sua soma seja diferente de 0 apenas numa região muito pequena do espaço. Em geral o número de ondas necessário será elevado.

Como cada onda tem o sua comprimento de onda, uma soma de um número elevado de ondas faz com que a partícula resultante tenha um comprimento de onda muito incerto

No limite de somarmos um número infinito de ondas chegamos à situação em que temos uma partícula perfeitamente localizada mas que tem um comprimento de onda totalmente incerto.

Por outra lado se tivermos uma só onda o seu comprimento de onda é totalmente certo e uma vez que uma onda tem uma extensão espacial infinita a sua posição é totalmente incerta.

Vemos que existe uma relação de proporcionalidade inversa entre a dispersão de uma partícula relativamente à sua posição e a dispersão de uma partícula relativamente ao seu comprimento de onda.

Fisicamente a quantidade de interesse é o momento linear e o seguinte resultado é válido:

\displaystyle \Delta x \Delta p \geq \frac{\hbar}{2} \ \ \ \ \ (44)

que é a relação de incerteza de Heisenberg. {\Delta x} é a dispersão relativamente à posição da partícula e {\Delta p} é a dispersão relativamente ao momento linear da partícula.

É também possível provar com toda a generalidade que para a o tempo necessário para a transição de energia e para a energia transferida vale uma desigualdade análoga.

\displaystyle \Delta E \Delta t \geq \frac{\hbar}{2} \ \ \ \ \ (45)

— 7. Aplicações da Equação de Schroedinger —

Neste capítulo vamos dar uso ao Axioma 10. Este axioma indica como varia um estado quântico ao longo do tempo e é vital para que possamos compreender a dinâmica a nível atómico.

De notar que o Axioma 10 é uma equação diferencial e como tal a teoria assim construída é determinista.

De acordo com o Axioma 11 A probabilidade de encontrar uma partícula no elemento de espaço {dx} é {| \Psi(x,t) |^2dx}. Assim sendo a probabilidade encontrar a partícula num intervalo { \left[ a,b \right]} é {\displaystyle \int_a^b | \Psi(x,t) |^2dx}.

Uma vez que a equação do Axioma 10 é uma equação linear sabemos que se {\Psi} é solução da equação de Schroedinger também {A\Psi} é uma solução da equação de Schroedinger.

Por outro lado temos que ter necessariamente

\displaystyle \displaystyle \int_{-\infty}^\infty | \Psi(x,t) |^2dx=1 \ \ \ \ \ (46)

Deste modo a constante complexa {A} fica fixada a menos de um factor de fase. Uma vez que este factor de fase é irrelevante no contexto deste curso a condição 46 efectivamente faz com que a nossa solução de Schroedinger tenha uma solução única.

De modo a simplificar a nossa discussão vamos supor que {\Psi(x,t)=\psi(x)\phi(t)}. Deste modo em vez da equação {\displaystyle-\frac{\hbar^2}{2m}\frac{\partial ^2 \Psi}{\partial x^2}+U(x)\Psi= i\hbar\frac{\partial \Psi}{\partial t}} que é equação à derivadas parciais temos:

   $latex i\hbar\frac{d\phi}{dt} &=& E\phi &fg=000000$

   $latex -\frac{\hbar^2}{2m}\frac{\partial ^2 \psi}{\partial x^2}+U(x)\psi &=& E\psi &fg=000000$

Que são duas equações diferenciais ordinárias.

Da primeira equação vem que a dependência temporal da função de onda é {\phi(t)=e^{-i\omega t}}. A segunda equação é conhecida como a equação de Schroedinger independente do tempo e é sobre ela que nos vamos debruçar nas secções seguintes.

— 7.1. Poço de Potencial Infinito —

pocopotencialinfinito

Apesar de esta situação ser bastante artificial a nível físico a sua componente didáctica é bastante elevada e convém ser estudado de modo a que possamos entender exemplos que tenha alguma relevância física.

Nesta situação a partícula desloca-se ao longo de um comprimento {L} onde não sofre a influência de nenhuma energia potencial. Mas ao chegar as extremidades do comprimento temos {U(0)=U(L)=+\infty}. Que é um potencial infinitamente repulsivo.

Para {x>L} ou {x<0} é obviamente {\psi(x)=0}.

Dentro da região onde o movimento é permitido temos {\psi(x)=A\sin \left(\dfrac{n\pi x}{L}\right)}. Solução que nos diz que os valores de energia que a partícula pode ter não mais fazem parte de um intervalo contínuo mas que passam a ser valores discretos.

funcoesondapocopotencialinfinito

— 7.2. Poço de Potencial Finito —

pocopotencialfinito

Uma situação mais realista é dizermos que uma partícula se desloca ao longo de uma região onde não está sujeita a nenhuma energia potencial e que nas extremidades desta região encontra um potencial {U(0)=U(L)=c}. Um potencial que é repulsivo mas finito.

Se assumirmos que {E<U} ou seja que a energia da partícula é inferior à energia potencial repulsiva vemos que as soluções de 7 permitem uma probabilidade não nula de encontrar a partícula fora da região onde estava inicialmente confinada.

funcoesondapocopotencialfinito

— 7.3. Oscilador Harmónico —

Para oscilações pequenas em torno de um ponto de equilíbrio sabemos que qualquer função de energia potencial pode ser aproximada por uma função quadrática. Assim a dinâmica resultante para partículas que tenham pequenos deslocamentos em torno de uma posição de equilíbrio é em primeira aproximação a dinâmica de um movimento harmónico.

Para o oscilador harmónico a equação de Schroedinger é

\displaystyle -\frac{\hbar^2}{2m}\frac{d ^2 \psi}{d x^2}+\frac{1}{2}m\omega x^2\psi= E\frac{d \psi}{d t}

Não iremos resolver esta equação de forma exacta mas por argumentos heurísticos vamos propor uma solução possível para o estado fundamental.

Pelos exemplos anteriores vimos que no estado fundamental a função de onda nunca tomava o valor 0 mas aproximava-se dele assintoticamente. Vimos também que as soluções por nós encontradas reflectiam a simetria da energia potencial.

Assim sendo esperamos que o mesmo aconteça neste caso. Uma possível solução será então uma função da forma { \psi(x)=C_0e^{-\alpha x^2}}

Substituindo esta função na equação de Schroedinger vemos que { \alpha=\dfrac{m \omega}{2 \hbar}} e que { E=1/2\hbar\omega }. O que mostra que a energia de um oscilador harmónico quântico no estado fundamental não é zero.

É possível demonstrar que {E_n=(n+1/2)\hbar\omega}

— Bibliografia —

  • Physics for Scientists and Engineers 6th Edition R. A. Serway, J. W. Jewett
  • Modern Physics 3rd Edition R. A. Serway, C. J. Moses, C. A. Moyer
  • The Evolution of Physics A. Einstein, L. Infeld
  • Física Atómica 4ª edição Max Born
  • The Feynman Lectures on Physics Feynman, Leighton , Sands
Anúncios

Tópicos de Física Moderna – Parte II

— 3. Oscilações e Ondas —

Neste capítulo vamos introduzir algumas noções relacionadas com o movimento ondulatório em geral. Vamos também ver dois fenómenos que no contexto da mecânica clássica só podem ser explicados recorrendo ao conceito de onda.

As ondas e as oscilações são casos particulares de movimento oscilatório e como tal há conceitos básicos que são comuns aos dois tipo de fenómenos:

Definição 18

Período é o intervalo de tempo mínimo necessário para que dois pontos de um mesmo fenómeno ondulatório estejam no mesmo estado físico. O período representa-se pelo símbolo {T}.

Definição 19

Frequência é o número de ciclos de um fenómeno ondulatório que ocorre durante um segundo. Representa-se pela letra {f} e calcula-se utilizando a seguinte expressão {f=1/T}.

Definição 20

A frequência angular é { \omega = 2\pi/T=2\pi f }

— 3.1. Oscilações —

Nesta secção vamos apenas estudar o movimento harmónico. Este é um tipo de movimento importante uma vez que em primeira aproximação muitos tipos de movimentos oscilatório podem ser aproximados pelo movimento harmónico.

Imaginemos que temos uma partícula que se desloca ao longo de uma posição de equilíbrio e está sujeita a uma força {F}.

Definição 21

Um movimento diz-se harmónico quando num movimento oscilatório a força é proporcional ao deslocamento relativo à posição de equilíbrio e tem o sentido oposto ao do deslocamento.

\displaystyle F=-k x

Recorrendo ao Axioma 2 e introduzindo {k/m=\omega^2} podemos escrever a equação que descreve o movimento harmónico como

\displaystyle \frac{\partial ^2 x}{\partial t^2}=-\omega ^2 x \ \ \ \ \ (13)

 

As equações desta solução podem ser da forma {x(t)=A\cos (\omega t + \theta)} em que {A} é o deslocamento máximo relativamente à posição de equilíbrio e {\theta} é a fase que especifica qual a posição inicial da partícula.

No caso do movimento harmónico as definições 18 e 19 podem ser escritas na forma {T=2\pi \sqrt{m/k} } e {f=1/(2\pi) \sqrt{k/m} }.

Para um movimento oscilatório a energia cinética e potencial são:

  • {K=\dfrac{1}{2} m \omega^2 A^2 \sin^2( \omega t + \theta ) }
  • {U=\dfrac{1}{2} k A^2 \cos^2( \omega t + \theta ) }

Assim sendo a energia total do sistema é {E=\dfrac{1}{2}kA^2}

— 3.2. Ondas —

Definição 22

Uma onda é uma perturbação que se propaga transportando energia.

Definição 23

Comprimento de onda, {\lambda}, é a distância mínima entre dois pontos da onda que se encontrem nas mesmas condições.

Definição 24

A velocidade uma onda com comprimento de onda {\lambda} e período {T} é {c=\lambda/T=\lambda f}

Definição 25

O número de onda é {k=2\pi/\lambda}

É possível demonstrar que a equação que representa a propagação de uma perturbação {\phi} que se move com velocidade constante {c} é:

\displaystyle \frac{\partial ^2 \phi}{\partial x^2}=\frac{1}{c^2}\frac{\partial ^2 \phi}{\partial t^2} \ \ \ \ \ (14)

 

Com as definições anteriores é imediato ver que equações da forma {f_1=A\sin(kx \pm \omega t)} e {f_2=A\cos(kx \pm \omega t)} são soluções de 14. Estas funções chamam-se sinusoidais, {A} é a amplitude e representa o deslocamento máximo, relativamente à posição de equilíbrio, da entidade que está a vibrar.

Em geral podemos dizer que uma onda progressiva que se propaga para a direita é sempre da forma {f=f(x-ct)} enquanto que uma onda que se propague para a esquerda é sempre da forma {g=g(x+ct)}, onde {f} e {g} são funções a especificar.

Uma vez que a equação de onda é linear sabemos que qualquer combinação linear soluções da equação 14 é ainda uma solução da equação 14.

Para que as soluções tenham sentido físico devemos impor certas condições que as equações devem obedecer em determinadas regiões do espaço. Estas condições chamam-se condições de fronteira e o seu efeito é restringir o conjunto de valores que as soluções podem tomar.

As soluções de onda que respeitam as condições fronteira têm o nome de modos normais de vibração.

Quando uma onda se propaga e encontra a fronteira entre dois meios diferentes dois acontecimentos podem ocorrer:

  1. Transmissão: alguma da energia da onda propaga-se no segundo meio.

    transmissaoonda

    \caption{Transmissão de um Pulso de Onda}

  2. Reflexão: toda a energia da onda se propaga no primeiro meio mas com o sentido oposto.

    reflexaoonda3

    \caption{Reflexão de um Pulso de Onda}

Quando duas ondas sinusoidais da mesma amplitude e frequência que se propagam em sentidos opostos geram uma onda resultante cuja equação é dada por {f=2A\sin kx \cos \omega t}. Esta é a equação de uma onda estacionária.

— 3.3. Interferência —

Quando duas ondas do mesmo comprimento de onda e diferença de fase constante se encontram dá-se o fenómeno de interferência .

Se as duas ondas se encontrarem na mesma região do espaço e tiverem a mesma fase a interferência diz-se construtiva e a amplitude do onda resultante é igual à soma das amplitudes de cada onda original.

interferenciaconstrutivapulsoondas

\caption{Interferência Construtiva de dois Pulsos de Onda}

Se as duas se encontram na mesma região do espaço em oposição de fase a interferência diz-se destrutiva e a amplitude da onda resultante é igual à subtracção da amplitude das duas ondas originais.

interferenciadestrutivapulsoondas

\caption{Interferência Destrutiva de dois Pulsos de Onda}

A figura seguinte mostra uma representação esquemática de uma realização experimental para se observar um padrão de interferências:

InterferenciaOndas

\caption{Padrão de Interferência}

— 3.4. Difracção —

Quando luz de comprimento de onda bem definido incide numa barreira com uma abertura {d} acontece um fenómeno chamado difracção . Cada porção da fenda age como se fosse uma fonte independente e ondas provenientes de porções diferentes têm fases diferentes. Da sua interacção pode resultar interferência construtiva ou interferência destrutiva.

A figura seguinte mostra uma representação esquemática de uma realização experimental para se observar o fenómeno de difracção:

PadraoDifraccao

\caption{Difracção}

— 4. Electromagnetismo —

A teoria do Electromagnetismo é a primeira teoria Física a ter uma natureza moderna. É uma teoria de campo e para além do mais é uma teoria relativista.

— 4.1. Conceitos Básicos e Definições Preliminares —

Para criar uma teoria electromagnética devemos primeiro introduzir uma nova grandeza fundamental. Essa grandeza é a carga eléctrica que se representa pelo símbolo {Q} e a sua unidade no sistema internacional é o coulomb cujo símbolo é {\mathrm{C}}.

Definição 26

Campo eléctrico é um campo vectorial, denotado pelo símbolo {\vec{E}}, criado por uma carga eléctrica {q} (carga fonte).

Definição 27

Um campo eléctrico {\vec{E}} estabelece entre dois pontos {a} e {b} uma diferença de potencial {\displaystyle \Delta V=-\int_a^b \vec{E}\cdot d\vec{s} }

Definição 28

A força eléctrica {\vec{F}_e} surge da interacção de uma partícula de carga {q_2} (carga de teste) com o campo eléctrico criado por uma partícula de carga {q_1}.

\displaystyle \vec{F}_e=\vec{E}_1q_2 \ \ \ \ \ (15)

Definição 29

Uma carga eléctrica {q_0} que se desloque de {a} para {b} num campo eléctrico {\vec{E}} faz com que a energia potencial do sistema varie da seguinte forma {\displaystyle \Delta U=-q_0\int_a^b \vec{E}\cdot d\vec{s} }

Definição 30

Um campo eléctrico ao passar por uma superfície {S} de forma arbitrária estabelece um fluxo eléctrico {\Phi_E} que é dado peça seguinte expressão

\displaystyle \Phi_E = \int_S \vec{E}\cdot d\vec{A} \ \ \ \ \ (16)

onde {d\vec{A}} representa o vector de norma {dA}, direcção perpendicular à superfície.

Definição 31

Corrente eléctrica é a taxa de fluxo de carga eléctrica por unidade de tempo. Se consideramos o seu valor médio é {I_m = \Delta Q/\Delta t}. Se consideramos o seu valor instantâneo é {I=\dfrac{dQ}{dt}}

Definição 32

Campo magnético é um campo vectorial, denotado pelo símbolo {\vec{B}}, criado por uma carga eléctrica em movimento.

Definição 33

A força magnética {\vec{F}_B} surge da interacção de uma partícula de carga {q} com o campo magnético criado por uma partícula de carga {q_1}.

\displaystyle \vec{F}_B= q\vec{v}\times\vec{B} \ \ \ \ \ (17)

Definição 34

Um campo magnético ao passar por uma superfície {S} de forma arbitrária estabelece um fluxo magnético {\Phi_B} que é dado peça seguinte expressão

\displaystyle \Phi_B = \int_S \vec{B}\cdot d\vec{A} \ \ \ \ \ (18)

onde {d\vec{A}} representa o vector de norma {dA} e direcção perpendicular à superfície {S}.

— 4.2. Axiomas de Maxwell —

No interesse da consistência as equações de Maxwell serão denominadas por axiomas de Maxwell uma vez que o seu papel na teoria do electromagnetismo poder ser considerado equivalente ao papel de axiomas.

Apenas apresentaremos estes axiomas na sua forma integral ainda que estas equações possam ser expressas de modo totalmente equivalente por equações diferenciais.

Axioma 4

\displaystyle \oint \vec{E}\cdot d \vec{A}=\frac{q_{in}}{\epsilon_0} \ \ \ \ \ (19)

Axioma 5

\displaystyle \oint \vec{B}\cdot d \vec{A}=0 \ \ \ \ \ (20)

Axioma 6

\displaystyle \oint \vec{E}\cdot d \vec{s}=-\frac{d\Phi_B}{dt} \ \ \ \ \ (21)

 

Axioma 7

\displaystyle \oint \vec{B}\cdot d \vec{s}=\mu_0 I+ \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \ \ \ \ \ (22)

 

O primeiro axioma diz-nos o fluxo eléctrico que passa por uma superfície fechada é proporcional à carga contida no interior da superfície. O segundo axioma é equivalente à afirmação de que não existem cargas magnéticas.

O terceiro axioma expressa o facto que campos magnéticos que variam no tempo criam campos eléctricos. Por sua vez estes campos eléctricos não conservativos são responsáveis por criarem uma diferença de potencial {\oint \vec{E}\cdot d \vec{s} = \varepsilon } ao longo de um circuito eléctrico.

O quarto axioma expressa o facto que campos eléctricos que variam no tempo e correntes eléctricas criam campos magnéticos. O termo {\epsilon_0 \dfrac{d\Phi_E}{dt}} é denominado de corrente de deslocamento.

— 4.2.1. Consequências dos Axiomas de Maxwell —

Recorrendo ao axioma 4 e ao conceito de superfície Gaussiana podemos determinar a a expressão matemática do campo eléctrico de algumas distribuições de carga.

Uma superfície gaussiana tem que ter alguns dos seguintes atributos para permitir o cálculo de { \vec{E} }:

  • O valor do campo eléctrico deve ser constante na superfície.
  • A seguinte simplificação deve ser possível { \vec{E}\cdot d\vec{A}=EdA }.
  • {\vec{E}\cdot d\vec{A}=0}.
  • O valor do campo eléctrico é 0 na superfície.

Para o caso de uma carga pontual isolada a superfície gaussiana em questão é uma superfície esférica centrada na carga. Neste caso conseguimos obter os dois primeiros atributos e vem:

\displaystyle \vec{E}=k_e\frac{q}{r^2}\hat{r} \ \ \ \ \ (23)

 

Se definirmos {V(\infty)=0} vem que o potencial eléctrico de uma carga pontual é:

\displaystyle V=k_e\frac{q}{r}\hat{r} \ \ \ \ \ (24)

 

E deste modo a energia de interacção entre uma carga {q_1} e uma carga {q_2} separadas de uma distância {r} é:

\displaystyle U=k_e\frac{q_1 q_2}{r} \ \ \ \ \ (25)

 

Para um campo eléctrico uniforme vem que a diferença de potencial entre dois pontos separados de uma distância {d} é {\Delta V=-Ed}

Outras consequências dos axiomas de Maxwell serão exploradas nas series de exercícios.

— 4.3. Ondas Electromagnéticas —

Os axiomas 6 e 6 permitem deduzir que

\displaystyle \frac{\partial ^2 E}{\partial x^2}=\mu_0 \epsilon_0 \frac{\partial ^2 E}{\partial t^2} \ \ \ \ \ (26)

 

\displaystyle \frac{\partial ^2 B}{\partial x^2}=\mu_0 \epsilon_0 \frac{\partial ^2 B}{\partial t^2} \ \ \ \ \ (27)

 

Se identificarmos {c=1/\sqrt{\mu_0 \epsilon_0}} vemos que as equações 26 e 27 são equações de onda progressivas que se deslocam com a velocidade {c}.

É um facto experimental que a velocidade de propagação de luz tem um valor muito próximo de {c} e assim surge como hipótese o facto da luz nada mais ser do que um tipo de radiação electromagnética.

Esta hipótese foi posteriormente confirmada experimentalmente por Hertz e é um dos mais espectaculares sucessos da teoria electromagnética.

Outro facto interessante que provém da teoria electromagnética é que {c} é invariante. Isto é uma directa contradição ao que tínhamos visto anteriormente no contexto da Mecânica Clássica (secção 2).

— 5. Teoria da Relatividade Restrita —

Neste momento temos uma codificação bastante boa e consistente de um vasto conjunto de dados experimentais. No entanto temos duas situações algo espinhosas entre as nossas mãos. Em primeiro lugar as transformações de Galileu apenas afirmam a invariância das leis da mecânica. Em segundo lugar temos que a teoria electromagnética prevê que a velocidade da luz não depende do referencial inercial.

A resolução destes problemas no início do século XX acarretou uma profunda revisão dos conceitos de espaço e tempo e os conceitos de massa, energia e inércia.

— 5.1. Conceitos Básicos e Definições Preliminares —

Definição 35

Espaço-tempo é um espaço com três dimensões espaciais e uma dimensão temporal.

Definição 36

Um acontecimento é um ponto no espaço tempo.

Quer isto dizer que de agora em diante deixaremos de pensar no tempo como um parâmetro e que o nosso ênfase na especificação do estado de uma partícula passará para a posição que ela ocupa no espaço-tempo em vez de se focar no seu estado mecânico.

— 5.2. Axiomas de Einstein —

Axioma 8

As leis da Física têm a mesma forma em todos os referenciais inerciais.

Axioma 9

As ondas electromagnéticas têm a mesma velocidade em todos os referenciais inerciais.

O primeiro axioma é uma generalização do que se chama de Princípio de Galileu e o segundo axioma apenas é o constatar de um facto experimental. À primeira vista estes dois axiomas parecem ser incoerentes, mas tal é apenas fruto dos nossos preconceitos relativamente à natureza do espaço e do tempo.

— 5.3. Transformações de Lorentz —

Imaginemos um mesmo acontecimento {P} que é descrito em dois referenciais inerciais diferentes {S} e {S'}. Vamos supor que {S'} se move relativamente a {S} com uma velocidade constante {v} e que as origens dos dois referenciais coincidem para {t=0}.

referenciaistransformacoesgalileu

É agora nossa tarefa deduzir as equações que permitam transformar as coordenadas de um referencial para as coordenadas de outro.

Primeiro que tudo vamos notar que devido ao axioma 8 podemos escrever {x'=\gamma(x-vt)} e {x=\gamma(x'+vt')}.

Talvez seja conveniente realçar o facto de termos escrito {t'} na segunda equação e que isto quer dizer que a natureza do tempo não é assumida mas sim deduzida.

Após alguma manipulações algébricas obtemos

\displaystyle \gamma=\frac{1}{ \sqrt{1-\frac{v^2}{c^2}} } \ \ \ \ \ (28)

 

Ou seja as nossas transformações, denominadas por transformações de Lorentz são

{\begin{aligned} \label{eq:transformacoeslorentz} x' & = & \gamma(x-vt)\\ y' & = & y\\ z' & = & z\\ t' & = & \gamma\left(t-\dfrac{vx}{t^2}\right) \end{aligned}}

— 5.4. Consequências das Transformações de Lorentz —

As transformações cuja forma acabamos de deduzir têm consequências que parecem verdadeiramente incríveis ao senso comum:

  • O espaço e o tempo não mais são entidades absolutas.
  • O conceito de acontecimentos simultâneos é relativo ao referencial.
  • O comprimento de corpos em movimento encurta na direcção do seu movimento.
  • A fórmula para a adição de velocidades tem que ser revista.
  • Os conceitos de massa, energia e inércia devem ser repensados.

Entender o porquê da primeira consequência é trivial tendo em conta a forma das transformações de Lorentz. A segunda, terceira e quarta consequências serão demonstradas como exercícios e a última consequência será estudada na secção 5.

— 5.5. Relação entre Massa e Energia —

De modo a obtermos a conservação do momento linear utilizando as transformações de Lorentz a definição de momento linear (definição 14) deve ser revista.

Definição 37

O momento linear de uma partícula que se desloca com velocidade {\vec{v}} é

\displaystyle \vec{p}=\gamma m \vec{v} \ \ \ \ \ (29)

Definição 38

Quando o momento linear de uma partícula varia dizemos que a partículas está a ser actuada por uma força

\displaystyle \vec{F}=\frac{d}{dt}(\gamma m \vec{v}) \ \ \ \ \ (30)

A revisão dos conceitos de momento linear e força no contexto da teoria da relatividade implicam necessariamente a revisão do conceitos de energia cinética e do conceito de inércia.

Sabemos que uma força realiza trabalho sobre uma partícula ao longo de um determinado deslocamento.

\displaystyle W= \int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} \frac{dp}{dt} dx = mc^2(\gamma-1)

Se a força actua na partícula estando esta primeiramente em repouso é

\displaystyle K=mc^2(\gamma-1) \ \ \ \ \ (31)

 

Uma vez que {mc^2} é a energia associada a uma partícula quando esta está em repouso {\gamma mc^2} tem que ser a soma da sua energia cinética com a energia em repouso.

Definição 39 A energia total de uma partícula é dada pela equação

\displaystyle E=\gamma m c^2 \ \ \ \ \ (32)

 

Com a definição normal de trabalho e a definição relativista de força concluímos que a energia de uma partícula está relacionada com a sua massa. Quando {\gamma=1} (partícula em repouso) temos {E=mc^2}.

Uma vez que na física moderna o conceito de momento linear tem sentido físico enquanto que o conceito de velocidade não, é costume escrever a equação 32 na forma

\displaystyle E^2=(mc^2)^2+(pc)^2 \ \ \ \ \ (33)

 

Esta última equação indica que a massa e a energia são apenas duas faces de uma mesma moeda e que se podem converter uma na outra.

Para além disso também demonstra que a inércia, no contexto relativista, deixa de ser vista como uma medida da massa da partícula e passa a ser vista como uma medida da massa e do momento linear da partícula.

 

Tópicos de Física Moderna – Parte I

— Introdução —

O objectivo destes apontamentos é servirem de apoio aos estudantes do Engenharia Informática da Faculdade de Engenharia da Universidade Católica de Angola numa breve introdução aos conceitos de Física Moderna.

Uma vez que neste apontamentos os alunos não encontrarão exercícios resolvidos, para além de alguns simples exemplos, e que nem tudo o que será dito nas aulas constará destes apontamentos (a escassez de diagramas é, talvez, a sua falha mais evidente e os poucos diagramas que se encontram nestas folhas devem-se aos livros que constam da bibliografia) a presença nas aulas é fortemente recomendada.

Como se tal não bastasse, nem tudo que será escrito nestes apontamentos será dito nas aulas, e assim a relação entre os apontamentos e as aulas é de complementaridade.

O objectivo deste curso é introduzir alguns conceitos de Física Moderna de uma forma acessível. Como tal será feita uma breve revisão de alguns conceitos, pressupostos e resultados da mecânica clássica, ainda que utilizando alguma terminologia e conceitos mais modernos, e só depois a Física Relativista e Física Quântica serão introduzidas e estudadas.

Os temas que iremos tratar ao longo deste curso serão (quase) sempre introduzidos da mesma maneira: umas quantas definições de conceitos iniciais, uma exposição dos axiomas que regulam o comportamento das entidades definidas e os resultados que se seguem após o enunciado dos axiomas.

Sei bem que esta não é a maneira corrente de ensinar muitos destes tópicos a um nível introdutório, mas escolhi assim fazê-lo porque tal permite brevidade de exposição dos temas tratados e porque me parece que as teorias assim retratadas são manifestamente mais elegantes.

Espero que o que se ganhe em tempo e elegância não seja compensado por uma correspondente perda em pedagogia.

Aos alunos mais interessados recomenda-se a leitura do livro de A. Einstein e L. Infeld A Evolução da Física.

— Desiderata —

Apesar de ao longo do nosso curso nós praticamente não considerarmos experiências, a Física é, acima de tudo, uma ciência exacta e experimental. Assim sendo o seu objectivo deve ser a codificação de um conjuntos de dados experimentais por meio de modelos que permitam uma interpretação dos fenómenos que se decide estudar.

Um facto extraordinário é que a partir da codificação e interpretação de um certo conjunto de dados iniciais por parte de um modelo podemos utilizar esse mesmo modelo para prevermos uma nova classe de fenómenos. O confronto destas previsões com resultados experimentais permitirá concluir qual o domínio de validade da teoria construída.

Vamos então codificar os dados experimentais e construir um modelo que nos permita explicar e entender uma parte do mundo que temos à nossa volta.

— 1. Considerações Iniciais —

Podemos dizer sem estarmos muito longe da verdade que a Física fundamental moderna tem na sua essência três concepções fundamentais:

  1. O conceito de campo.
  2. A Relatividade.
  3. A Física Quântica

O conceito de campo é comum à praticamente todo o nosso curso por isso vamos já defino-lo:

Definição 1 Campo é um objecto matemático que tem um valor definido num dado conjunto de pontos do espaço.
Definição 2 Um campo diz-se vectorial quando os seus valores são grandezas vectoriais.
Definição 3 Um campo diz-se escalar quando os seus valores são grandezas escalares.

As equações de campo que vamos descrever representam sempre interacções lineares. Assim podemos considerar cada interacção proveniente de um campo como sendo independente das outras interacções e a resultante é simplesmente a soma de todas as interacções.

Associada ao conceito de campo temos o conceito de energia potencial . Esta energia deve-se à interacção da partícula com o campo {\vec{A}} e em geral é proporcional a {\displaystyle\int_a^b\vec{A}\cdot d\vec{s}} onde {d\vec{s}} é o vector deslocamento infinitesimal.

— 2. Mecânica —

A Mecânica Newtoniana é a primeira teoria Física que vamos estudar. Surgiu no século XVII, ganhou maturidade nos séculos XVIII e XIX e rejuvenesceu no século XX.

Este primeiro capítulo será uma introdução muito breve e superficial dos seus triunfos e resultados, mas ainda assim espero demonstrar alguma da sua extrema elegância e profundidade.

— 2.1. Conceitos Básicos e Definições Preliminares —

Todas as grandezas mecânicas podem ser expressas em unidades que derivam das unidades das três grandezas seguintes:

  • Comprimento que se representa pela letra {L}.
  • Tempo que se representa pela letra {T}.
  • Massa que se representa pela letra {M}. Na mecânica clássica a massa de um corpo é uma indicação da sua resistência a alterar o seu estado de movimento. Esta característica tem o nome de inércia .

As unidades que utilizámos para expressar estas grandezas não têm nada de essencial e são puramente convencionais. Neste curso iremos utilizar o sistema internacional e vem que {\left[ L \right] =m}, {\left[ T \right] =s} e {\left[ M \right] = \mathrm{Kg}}.

Definição 4

Um referencial é um conjunto de eixos que permitem representar os graus de liberdade do sistema em estudo e um ponto arbitrário que serve como origem.

Definição 5 Um referencial diz-se inercial : quando possui as seguintes propriedades:

  • Espaço é homogéneo (todos os pontos são equivalentes) e isotrópico (não existem direcções privilegiadas).
  • Tempo é homogéneo (todos os instantes de tempo são equivalentes).
Definição 6 Posição é o lugar geométrico que a partícula ocupa num dado instante de tempo num referencial.
Definição 7 Trajectória é o lugar geométrico das sucessivas posições que a partícula ocupa num intervalo de tempo.
Definição 8 Deslocamento é a diferença entre a posição final e a posição inicial de uma partícula. Normalmente representamos o deslocamento através do símbolo {\Delta \vec{x}}.

Sabemos pela experiência que os corpos se deslocam percorrendo deslocamentos diferentes em intervalos de tempo diferentes. O conceito que relaciona a variação da posição de uma partícula com o intervalo de tempo necessário para essa variação ocorrer é chamado de velocidade . Mas em física convém sermos mais rigorosos e definirmos dois tipos diferentes de velocidade.

Definição 9 Velocidade média : grandeza vectorial que permite calcular a taxa de variação da posição para um dado intervalo de tempo.

\displaystyle \vec{v}_m=\dfrac{\Delta \vec{x}}{\Delta t} \ \ \ \ \ (1)

Definição 10 Velocidade instantânea : grandeza vectorial que permite calcular a variação da posição para um dado instante de tempo.

\displaystyle \vec{v}=\lim_{\Delta t\rightarrow 0}\dfrac{\Delta \vec{x}}{\Delta t}=\dfrac{d\vec{x}}{dt} \ \ \ \ \ (2)

Uma vez que a velocidade das partículas também varia, fenómeno que recebe o nome de aceleração }, podemos introduzir as seguintes definições:

Definição 11 Aceleração média : grandeza vectorial que permite calcular a taxa de variação da velocidade para um dado intervalo de tempo.

\displaystyle \vec{a}_m=\dfrac{\Delta \vec{v}}{\Delta t} \ \ \ \ \ (3)

Definição 12 Aceleração instantânea : grandeza vectorial que permite calcular a variação da velocidade para um dado instante de tempo.

\displaystyle \vec{a}=\lim_{\Delta t\rightarrow 0}\dfrac{\Delta \vec{v}}{\Delta t}=\dfrac{d\vec{v}}{dt} \ \ \ \ \ (4)

Convém ainda dizer que normalmente diz-se apenas velocidade (aceleração) em vez de velocidade instantânea (aceleração instantânea).

Associado ao conceito de velocidade temos dois conceitos físicos. Um deles escalar, e portanto fornece menos informação sobre o movimento da partícula, e o outro vectorial.

Definição 13 Energia cinética : energia associada ao movimento de uma partícula e defini-se como sendo:

\displaystyle K=\dfrac{1}{2}m\vec{v}\cdot\vec{v}=\dfrac{1}{2}mv^2=\dfrac{1}{2}m\left( \dfrac{d\vec{x}}{dt}\right)^2 \ \ \ \ \ (5)

Definição 14 Momento linear : grandeza vectorial associada ao movimento de uma partícula.

\displaystyle \vec{p}=m \vec{v}=m \dfrac{d\vec{x}}{dt} \ \ \ \ \ (6)

Vemos então o porquê da afirmação da energia cinética conter menos informação sobre o movimento da partícula do que o movimento linear. Pela sua definição a energia cinética não nos dá informação sobre a direcção da velocidade da partícula enquanto que o momento linear nos diz tanto a direcção e a magnitude da velocidade.

Em termos mais prosaicos: o momento linear diz para onde vai a partícula e com que velocidade vai. A energia cinética apenas nos diz com que velocidade vai a partícula.

Definição 15

O estado mecânico de uma partícula é especificado através da determinação simultânea e de precisão infinita das suas coordenadas e do seu momento linear.

— 2.2. Axiomas de Newton —

Até ao momento temos os intervenientes da nossa peça mas ainda não temos as regras que deverão guiar as suas interacções. Estas regras são dadas pelos três axiomas de Newton.

Axioma 1 Existe um referencial inercial onde o momento linear de uma partícula livre mantém sempre o mesmo valor.

Este enunciado não é o que habitualmente se apresenta como a “Primeira Lei de Newton”. Convém então dar uma explicação do porquê da forma deste enunciado.

Anteriormente definimos um referencial inercial, mas a definição que demos é de carácter puramente matemático. Nada neste mundo implica a existência da estrutura matemática que definimos e a função da “Primeira Lei de Newton” é exactamente estipular a existência de um tal referencial no mundo em que habitamos. A justificação desta arrojada hipótese é o espectacular acerto das previsões que a teoria de Newton faz e os resultados obtidos em experiências.

De notar que o habitual enunciado da “Primeira Lei de Newton” está errado em referenciais não inerciais. Uma vez que o habitual enunciado não especifica a que tipo de referencial se refere também ele está, consequentemente, errado.

Outro pormenor interessante é que o Axioma 1 apenas exige a existência de um referencial inercial, mas podemos concluir que existe um número infinito de referenciais inerciais.

Sabemos que num referencial inercial o espaço é homogéneo e isotrópico e que o tempo é homogéneo. Assim sendo o ponto que escolhemos como origem nada tem de especial e podemos efectuar uma translação para um outro ponto qualquer e passar a considerar esse novo ponto como sendo a origem de um novo referencial inercial.

Para além disso podemos rodar todos os nossos eixos em simultâneo e obter novos eixos. Estes novos eixos apenas se distinguem dos antigos por terem novas direcções. Uma vez que o espaço é isotrópico tal facto não acarreta nada de novo e assim este novo referencial continua a ser inercial.

Outra transformação que podemos fazer é obter um referencial que se mova com velocidade constante relativamente ao primeiro referencial. Novamente este situação nada tem de novo e os referenciais continuam a ser equivalentes.

Uma vez que o tempo é homogéneo o instante de tempo que se convencionou ser {0} nada tem de especial. Ou seja um referencial que se obtém de um referencial inercial, alterando o que se considera como sendo o instante inicial, também é um referencial inercial.

Para finalizar temos ainda que dizer que qualquer composição destas transformações também produz um referencial inercial.

Axioma 2

Se o momento linear de uma partícula varia num referencial inercial diz-se que essa partícula foi actuada por uma força, {\vec{F}}, que se calcula utilizando a seguinte expressão: {\vec{F}= \dfrac{d\vec{p}}{dt}}.

Este axioma reduz-se a {\vec{F}=m\vec{a}} quando a massa da partícula é constante. No que se segue iremos sempre considerar que a massa da partícula é constante.

Axioma 3

Quando dois objectos interagem entre si a força {\vec{F}_{12}} (força que o objecto 1 exerce sobre o objecto 2) tem a mesma direcção, é igual em intensidade à força {\vec{F}_{21}} (força que o objecto 2 exerce sobre o objecto 1), mas tem o sentido oposto. {\vec{F}_{12}=-\vec{F}_{21}}

— 2.3. Cinemática e Dinâmica —

Nesta secção vamos introduzir muito esquematicamente considerações que visam descrever e explicar o movimento de uma partícula.

— 2.3.1. Equações de Movimento —

Das definições de aceleração e velocidade que introduzimos na secção 2 resulta o seguinte

\displaystyle d\vec{v}= \vec{a}dt \Rightarrow \int_{t_0}^t d\vec{v}= \int_{t_0}^t \vec{a}dt \Rightarrow \vec{v}(t)-\vec{v}(t_0)=\int_{t_0}^t \vec{a}dt \ \ \ \ \ (7)

Uma vez que a relação funcional da aceleração em função do tempo não é conhecida o lado direito da última igualdade não pode ser calculado.

Temos ainda

\displaystyle d\vec{x}= \vec{v}dt \Rightarrow \int_{t_0}^t d\vec{x}= \int_{t_0}^t \vec{v}dt \Rightarrow \vec{x}(t)-\vec{x}(t_0)=\int_{t_0}^t \vec{v}dt \ \ \ \ \ (8)

 

Onde também não prosseguimos o cálculo visto que desconhecemos a expressão {\vec{v}(t)}.

Se consideramos que {\vec{a}} é constante no tempo (movimento uniformemente acelerado)podemos resolver a equação 2, { \vec{v}=\vec{v}_0+\vec{a}(t-t_0)}, e após substituição na equação 8 obtemos

\displaystyle \vec{x}(t)=\vec{x}_0+\vec{v}_0(t-t_0)+\frac{1}{2}\vec{a}(t-t_0)^2 \ \ \ \ \ (9)

 

No caso {\vec{a}=\vec{0}} o movimento diz-se rectilíneo uniforme.

— 2.3.2. Transformações de Galileu —

Tínhamos visto após o axioma 1 que existe uma infinidade de referenciais inerciais. Faz então sentido perguntarmo-nos como podemos saber as coordenadas e velocidade de um ponto material num segundo referencial inercial.

Imaginemos que temos dois referenciais {S} e {S'} cujas origens coincidem no instante de tempo que convencionámos tomar como origem do tempo. Para além disso {S'} move-se com uma velocidade {\vec{v}_0} relativamente a {S}.

TransformacaoGalileu

Pela adição de vectores é {\vec{v}_0 t+\vec{r}'=\vec{r}} que podemos escrever na forma de componentes:

{\begin{aligned} x' & = & x-v_{0x}t\\ y' & = & y-v_{0y}t\\ z' & = & z-v_{0z}t \end{aligned}}

Derivando as anteriores equações em ordem ao tempo

{\begin{aligned} v'_x & = & v_x-v_{0x}\\ v'_y & = & v_y-v_{0y}\\ v'_z & = & v_z-v_{0z} \end{aligned}}

As transformações de Galileu são equivalentes à afirmação que a forma das equações da Mecânica não depende do referencial inercial que se escolhe para estudar o movimento.

— 2.3.3. Movimento circular —

Uma vez que a velocidade é uma grandeza vectorial uma partícula diz-se acelerada não só quando a velocidade varia em módulo mas também quando varia em direcção.

Para o movimento ser circular tem que existir uma força que se chama força radial, { \vec{F}_r }, que em todos os pontos da trajectória da partícula tem a direcção do centro. Esta força causa uma aceleração radial, também chamada centrípeta, cuja expressão matemática é {a_c=v^2/r}.

A aceleração responsável pela variação da velocidade em módulo é a aceleração tangencial, {a_t}.

— 2.4. Campo Gravítico —

A lei da gravitação universal diz que todas as partículas do Universo atraem todas as outras partículas do Universo com uma força que é inversamente proporcional ao quadrado da distância que as separa e directamente proporcional ao produto das suas massas.

Enunciada desta forma esta lei tem o problema de implicar que a interacção gravítica é instantânea. Para solucionarmos este problema vamos apresentar a gravidade como sendo um propriedade emergente de um campo.

Definição 16 Campo Gravítico: Campo vectorial, {\vec{g}}, criado por um corpo de massa {m_1} em todos os pontos do espaço (excepto no ponto onde se encontra) que é responsável pela interacção gravítica.

\displaystyle \vec{g}=G\frac{m_1}{r^2}\hat{r} \ \ \ \ \ (10)

Quando uma partícula de massa {m_2} é colocada num ponto do espaço onde existe um campo gravítico {\vec{g}} a partícula interage com este campo gravítico. Ao interagir com o campo gravítico a partícula de massa {m_2} fica sob a acção de uma força {\vec{F}_g} cuja expressão matemática é

\displaystyle \vec{F}_g=\vec{g}m_2=G \frac{m_1 m_2}{r^2}\hat{r} \ \ \ \ \ (11)

 

Onde {\hat{r}} é um vector unitário com a direcção da recta que une as duas partículas e com sentido a apontar para {m_1}.

Para o caso particular de um corpo de massa {m} que esta a {h} metros da superfície da Terra sujeito à sua atracção gravitacional é

\displaystyle F_g=G \frac{M_T m}{(R_t+h)^2}

Recordando que {\vec{F}=m\vec{a}} para corpos de massa constante podemos escrever que a intensidade da aceleração da gravidade é

\displaystyle g=G\frac{M_T}{(R_t+h)^2}

.

Definição 17

Quando dois corpos de massa {m_1} e massa {m_2} interagem graviticamente estabelece-se entre eles uma energia derivada do campo gravítico. Esta energia tem o nome de energia potencial gravítica e a sua expressão matemática é

\displaystyle U=-G \frac{m_1 m_2}{r} \ \ \ \ \ (12)

 

Teoria das Cordas – Noções, cronologia, interpretações

Em 1968, o jovem físico Gabriele Veneziano começou por procurar um conjunto de equações que explicassem a Força Nuclear Forte, a força extremamente poderosa que une o núcleo de todos os átomos, juntando protões com neutrões.

Reza a história que enquanto vasculhava num livro de História da Matemática, Veneziano constatou no mesmo uma equação com 200 anos de Leonhard Euler, um fisico suiço, que havia se deparado com várias curiosidades matemáticas no passado, poderia agora enquadrar-se com a força nuclear forte. Veneziano publicou de imediato a sua tese, “The Gamma Function”, baseada nesta descoberta “acidental”, tornando-se conhecido desde então pela comunidade. Embora existam vários rumores de como foi descoberta esta tese, que miraculosamente descrevia a força nuclear forte, rapidamente  tomou vida própria.

Assistiamos assim, ao nascimento da Teoria das Cordas.

Partilhada por vários fisicos, a equação de Euler chegou então a Leonard Susskind, um fisico americano, que ficou fascinado pela possivel interpretação de algo novo e desconhecido. Incessantemente, Leonard investigou durante meses a possibilidade de descrever uma nova particula, com estrutura interna própria, que podia se alterar, como uma corda que vibrava, esticava, em vez de uma particula estática. Susskind comprovou que esta nova interpretação era perfeitamente compativel com a equação de Euler.

O nome “Teoria das Cordas” nasceu.

Mas esta teoria foi mais longe. As suas implicações seriam revolucionárias na concepção do Universo, uma mudança dramática na Física, prometendo a resolução entre vários paradigmas anteriores como a integração da gravidade em mecânica quântica, a previsão de várias particulas com características surpreendentes, uma nova noção de espaço, energia e comportamento sub-atómico.  Uma nova esperança brutara para reacender o sonho que ocupou obsessivamente Albert Einstein nos seus últimos anos de vida…uma teoria elegante para a unificação das forças, uma teoria do “Tudo”.

No entanto, na comunidade cientifica, a Teoria das Cordas vivia na sombra do modelo padrão concebido anteriormente. Considerada elegante e ousada,mas longe de ponderada com seriedade , como se nada tivesse a ver com a Natureza. Os seus pioneiros estavam convencidos que conseguiam “cheirar” a realidade e continuar nos seus avanços. Mas quanto mais se entregavam à teoria, mais problemas eram descobertos…  Existiam vários, na verdade. Por exemplo:

– A previsão de uma nova particula que sabemos não ser física, a qual chamamos de “taquião” (tachyon), podendo viajar mais rápido que a luz;

– A sugestão que poderão exisitir 10 dimensões, o que é bastante surreal uma vez que é óbvio que são mais do que as existentes;

– A previsão de uma particula sem massa, que não era detectável em experiências laboratoriais.

Logo, todos estes novos progressos não pareciam de todo exequíveis, deprovidos de qualquer sentido lógico, eventualmente soavam a ideias loucas. De tal forma, que muitas vezes era assumido como absurdo e ignorado.

Em 1973, apenas alguns jovens físicos lutavam com as obscuras equações da teoria das cordas. John Henry Shcwarz, físico norte-americano, deparava-se ainda com os inúmeros problemas da teoria, entre eles a misteriosa particula sem massa prevista mas nunca detectada na Natureza e um conjunto de inconsistências matemáticas / anomalias. Schwarz tentou remoldar, redefinir a teoria, ajusta-la, mas sem sucesso. Prestes a abandonar a sua investigação, uma nova perspectiva surgiu em mente, uma ideia remota baseada na hipotética possiblidade que as equações estivessem a descrever a gravidade. Mas isso significaria que teriamos que considerar o tamanho destas cordas de energia. Este foi de longe um passo de gigante. Até conceber a hipótese que estariamos a lidar com uma teoria da gravidade, as interpretações retiradas eram insuficientes e inconsistentes. Ao considerar que as cordas seriam de um comprimento Planck (10−35 m), esta particula ilusiva que Schwarz perseguira, aparentava ser um gravitão (graviton “G”), acreditada como responsável por transmitir gravidade a nivel quântico.

A Teoria das Cordas apresentava agora a peça que faltava no puzzle do modelo padrão.

Schwarz publicou a sua tese onde descrevia como a gravidade funciona a nivel sub-atómico, mas embora parecesse incontestável, a sua publicação não obteve qualquer reacção na comunidade cientifica. Mais uma vez, a teoria das cordas caia por terra… Schwarz não se declarou derrotado, pois defendia que se as cordas descreviam a gravidade a nivel quântico, deviam ser a chave para unir as quatro forças da Física. Um dos únicos cientistas dispostos a arriscar a sua carreira como físico nesta demanda, Michael B. Greene, aliou-se a Shwarz. Esta aliança motivada teria que confrontar o facto que durante os anos ’80, a teoria das cordas possuia falhas drásticas na matemática, conhecidas como anomalias. Uma anomalia é uma incosistência matemática, algo que não se suporta em cálculo, algo que se descreve estranho ou deslocado. Vejamos o exemplo:

– Considerando que temos duas equações que descrevem a realidade: 2x=2 e x/2=1

Obtendo na 1º equação x=1; na 2ª equação x=2, deparamo-nos com uma anomalia, porque sabemos que só pode haver um valor para x. A menos que possa redefinir as duas equações, obtendo o mesmo valor de x, a teoria desaba por sí.

O mesmo aconteceu com a teoria das cordas, nos anos 80. Enfrentando anomalias parecidas com o exemplo acima descrito, embora muito mais complexas, a sua refinação era lenta. Em concreto anomalias com integração da teoria da gravidade e a teoria de Yang-Mills.

Em 1984, Shwarz e Greene conseguiram demistificar as anomalias, chegando a um resultado conclusivo e auto-sustentável matematicamente, considerando agora a possiblidade de descrever a união das forças da Física, o sonho de Einstein, banstante alcansável. A sua publicação foi desta vez feita com algum ceptismo perante a comunidade, a dupla aliada já não acreditara que se criasse algum impacto substancial. Mas a história provou-os errados. O impacto foi chocante e avassalador. Em apenas alguns meses, o número de físicos e cientistas aumentou exponencialmente, de apenas um pequeno grupo para mlihares de aficionados e fascinados por todo o mundo. Esta nova versão da teoria das cordas aparentava descrever com sucesso tudo o que vemos na Natureza, de forma sustentada e coerente. Em cada grão de areia estão biliões de átomos, cada átomo é formado por electrões orbitrando um nucleo formado por protões e neutrões, compostos por pedaços mais pequenos de matéria chamados “quarks”.

Mas a teoria das cordas afirma espantosamente que as particulas que constituem tudo no Universo são compostas por ingredientes ainda mais pequenos… fios vibrantes de energia  que se parecem com cordas. Cada uma destas cordas é inimaginavelmente pequena, aliás se um átomo fosse do tamanho do sistema solar, uma corda seria tão grande como carro familiar.

A ideia elegante desta teoria sugere que tal como uma corda de violino emite uma frequência diferente, produzindo assim o que ouvimos como diferentes notas musicais, as cordas vibram variavelmente produzindo propriedades unicas às particulas, como massa e carga energética. De um ponto de vista quotidiano, esta concepção quase romântica, indica que a diferença entre as particulas que formam o ser humano, de um carro, um cão ou as particulas que transmitem a gravidade, consiste na forma como estas cordas vibram. Composto por estas cordas que oscilam vibrações diferentes, o Universo pode ser visto como uma grande sinfonia cósmica, juntando pacificamente as duas perspectivas de um universo quântico sub-atómico, e um universo relativista vasto, unindo todas as forças e toda a matéria.

Mas esta encantadora teoria, possui ainda um ponto fraco…

Nenhuma experiência poderá ser realizada para comprovar empiricamente a teoria, considerando as distâncias relativistas de um universo infinitamente vasto. Nenhuma observação pode ser feita num universo sub-atómico, para relacionar sob forma de prova a conclusão. O que, ironicamente, serve também o argumento: Não existe nenhuma experiência ou observação possível (considerando a tecnologia humana num futuro próximo) que prove inconstestavelmente que a teoria das cordas está errada. A teoria está salva, permanentemente. A pergunta que surge de imediato é: É uma teoria da Física ou uma filosofia?

Não nos esqueçamos de que para funcionar, a teoria das cordas necessita de mais dimensões, algo que parece tirado de um filme de ficção cientifica. Mais dimensões de… espaço. Para que os físicos integrados nesta teoria fossem reconhecidos e acompanhados, teriam que explicar inexoravelmente como esta afirmação podia ser aplicada. Curiosamente, a ideia estranha de que existem mais dimensões nasceu quase há um século. Em 1919, um quase desconhecido matemático alemão chamado Theodor Franz Kaluza, teve a coragem de desafiar o óbvio. Kaluza sugerira que talvez o nosso Universo teria mais uma dimensão, que por alguma razão não fosse visível. O matemático alemão partilhou a sua ideia com Albert Einstein, e embora Einstein estivesse inicialmente entusiasmado com a proposta, permaneceu reticente 2 anos, até à sua publicação. A ideia numa forma simplista consiste no principio de Einstein, publicado em 1916, que prova que a gravidade não é mais que tecido maleável, compropriedades especificas no espaço, em 3 dimensões de espaço e 1 dimensão de tempo.

3 anos depois Kaluza propôs que o electromagnetismo também poderia partilhar das propriedades da gravidade. Mas para ser verdade, Kaluza necessitava de um espaço onde esse tecido pudesse ser moldado. Então, Kaluza sugere uma dimensão adicional, escondida de observação possivel. Interessado no trabalho de Kaluza, o físico sueco Oskar Klein uniu-se na investigação e ambos declaram uma resposta pouco ortodoxa: o tecido do nosso universo pode ter as dimensões concebidas (3+1) mas também dimensões circulares mais pequenas, mesmo a nivel quântico. Para ilustrar esta noção temos que utilizar uma outra perspectiva, eis um exemplo: Considerem um donut em cima de um prato na mesa. Observado a 5 metros ao nivel da mesa, tudo o que vemos é uma forma meio rectangular creme, numa dimensão apenas. Uma formiga que passe por cima da mesa pode caminhar para cima e baixo do donut, trás e frente, para os lados mas também circular em redor do doce . A formiga têm uma percepção bastante diferente que a nossa baseada numa dimensão apenas.

Kaluza e Klein sugeriram então, resumidamente, que o universo pode ser constituido de dimensões amplas, vastas, mais abrangentes, mas também por dimensões mais pequenas, indetectáveis pela nossa percepção, a nivel sub-atómico, onde tal como uma formiga circulando um donut, as particulas poderiam vaguear nestas dimensões.

Para que a teoria das cordas seja processada com sucesso, a matemática e cálculo exigem mais dimensões de espaço que nos rodeam. Exactamente iguais às dimensões que conseguimos ver, apenas diferentes na sua forma. “Forma” é de acordo com a teoria das cordas a pedra basilar. Na sua interpretação, estas dimensões adicionais indicam que pela sua forma particular, ajustam o tecido do próprio espaço.  De acordo com a previsão, se pudessemos encolher por forma a navegar por estas dimensões, veriamos que estas dimensões influenciam o comportamento das cordas, condicionando a sua frequência e como vibram, criando assim as particulas fundamentais do universo. É certo que as equações que demonstram este curto parágrafo são bastante complexas, abismais diria. Tanto que as melhores mentes confrontadas com as implicações da teoria das cordas até aos anos 90, encontravam alguma resistência ou atrito na sua interpretação/resolução (ainda hoje). Mas algures no processo de desvendar peça a peça o quebra-cabeças, os físicos envolvidos foram longe demais. Foram derivadas por concepções semelhantes, 5 teorias das cordas diferentes, cada uma delas competindo pelo titulo “Teoria de Tudo”. Se por um lado existia algum contentamento por 1 das 5 teorias das cordas ser o possivel candidato vencedor, a pergunta mais evidente levantava a constatação do óbvio: Porque existem 5?!

As 5 teorias tinham muitos aspectos em comum, todas envolviam cordas vibrantes, mas os seus detalhes matemáticos e demonstração prática eram completamente distintos. Forçosamente uma teoria que explique tudo não poderá ter 5 visões diferentes. Em 1995, Edward Witten, fisico e matemático único (provavelmente uma das melhores mentes desde Einstein), convocou fisicos de todo o mundo para uma palestra na Universidade da Califórnia do Sul, que viria a chocar toda a comunidade cientifica. Witten estara interessado nas 5 teorias das cordas, decidido a deixar o seu contributo estabeleceu que a existência de várias teorias das cordas era insustentável, estando determinado a eliminá-las. A resolução do paradigma chegou através de uma nova forma surpreendente e radical, que Witten apressou comunicando aos seus colegas que encontrara a solução para todas as teorias das cordas, tinha resolvido o problema de todas as dimensões e iria anunciar publicamente durante a palestra. A intervenção de Witten não podia ter sido mais forte, de uma forma súbtil e elegante, mudou a perspectiva de interpretação das 5 teorias das cordas, considerando que embora diferentes entre si, todas elas reflectiam uma única teoria, em diferentes espectros e ângulos. Edward Witten foi o responsável por unificar a teoria unificadora de todas as forças. Dificilmente existirá outra ironia igual na Física.

Esta nova teoria unificada por Edward Witten ganhou um nome baptizado pelo próprio: M-Theory.

Embora niguém saiba o que na realidade quer dizer “M”, quer-me parecer que “M” seja um “W” invertido de “Witten”. Muitos partilham desta opinião.

Na emergente saga que se seguiu à publicação de Witten e a sua M-Theory, a teoria das cordas estava oficialmente visada para uma aplicação global no entendimento fundamental da Fisica. Mas existia um preço a pagar… As 5 teorias das cordas necessitavam de 10 dimensões no seu âmago: 1 tempo e 3 espaço + 6 espaço completamente invisivéis. Só desta forma poderiam ser sustentáveis. A M-Theory foi um pouco mais longe, acrescentando mais um dimensão, num total de 11 dimensões. O principio assenta no facto que as dimensões estão relacionadas forcosamente  com as direcções que se podem tomar, por vezes chamadas de graus de liberdade. Quanto mais dimensões ou graus de liberdade temos, mais direcções podemos tomar. Se consideramos 11 dimensões, as cordas previstas na teoria podem consequentemente fazer muito mais. A dimensão que Witten acrescentou radicaliza a interpretação das cordas. De destacar a concepção que permite que as cordas estiquem, formando algo como uma membrana, vulgarmente abreviado entre a comunidade de “brane” (mem-brane). Uma brane pode ter 3 dimensões ou mesmo mais, e com energia suficiente podem crescer até um tamanho astronómico, talvez tão grande como um universo. Tal perspectiva foi uma revolução na teoria das cordas e para os fisicos intervenientes. Tanto que actualmente, continua apelidada de teoria das cordas, mas considerando a existência de branes há quem hesite considerar que se trate de cordas apenas. A ponderação na existência de membranas e dimensões adicionais é tão profunda nesta teoria que a forma como podemos ilustrar o nosso universo dentro de uma membrana (brane) pode implicar interpretações ainda mais radicais, como multiplos universos, cada um com uma brane, criando a sua própria matéria e particulas, as suas próprias Leis da Fisica. Chegamos assim a um novo paradigma de universos paralelos, ou melhor, a um multiverso. Esta ideia é poderosa, porque se de facto for correcta, significa que a nossa ideia de universo está ofuscada pelo facto de estarmos confinados a uma porção de um universo com mais dimensões, sem conseguirmos alcançar novos horizontes. Esta ideia é forte porque lida mais uma vez com a gravidade.

Enquanto força, a gravidade é menor que qualquer outra força da Física. Derrotamos a gravidade exercida pelo planeta Terra na maçã de Newton, levantando apenas com a força do nosso braço. Uma grua com braço magnético levanta com facilidade um veiculo do chão. Embora a força electromagnética seja mais forte que a força da gravidade (na verdade 1039 vezes mais forte)  funciona de forma diferente. Esta discrepância na fraqueza da força da gravidade sempre foi alvo de inquérito pela Física, porém neste mundo radical da teoria das cordas, levanta-se um novo modo de abordar o problema. Uma das formas de responder porque é a força da gravidade tão fraca comparada com as restantes forças, passa por reformular a pergunta em si, no sentido em que não é mais fraca que as restantes, apenas aparenta ser. Esta questão é hipotética mas existe a possiblidade de a força da gravidade ser tão forte como a electromagnética mas por algum motivo não conseguimos sentir a sua força. Integrando a teoria das cordas neste paradigma, podemos equacionar o facto de que a gravidade pode não estar restrita a uma membrana, podendo dissipar-se da nossa parte do universo.

Mais uma vez a resposta reside na “forma” das cordas. Até meados dos anos 90, a ideia generalizada relativa à forma das cordas vibrantes consistia num loop, algo como um elástico, imagem ilustrada por Susskind. Depois da introdução da M-Theory as possibilidades apontam para uma outra forma coexistente, uma corda onde as suas extremidades estão presas a um universo tridimensional, provocando assim toda a matéria existente.  Mas as formas fechadas sem extremidades não são contestadas, são mantidas como ilustração possivel. Não tendo extremidades, consideram-se  livres de escapar por entre as 11 dimensões. Este método ilustrativo (numa forma resumida e básica) explica a previsão inerente na teoria das cordas para a existência do gravitão (graviton), responsável pela força da gravidade. Desta forma, devido ao seu grau de liberdade entre dimensões, a força da gravidade pode de facto ser iludida.

Estes pontos puramente teoréticos, levantam a questão pertinente  fomentada na hipótese de vivermos numa membrana, num universo integrado num multiverso. Podemos nunca sair deste universo mas talvez possamos sentir a gravidade do nosso universo paralelo vizinho?

Na maior máquina alguma vez criada pelo Homem, o Large Hadron Collider, procedem-se a testes na aceleração de particulas a uma velocidade prómixa da luz, colidindo directamente as particulas e examinando o embate através de longas listagens de dados recolhidos. Tal esforço e investimento comprometidos contribuiram para centenas de novas particulas detectadas,incluindo uma particula bastante semelhante ao bosão Higgs (99,999999% semelhante)  também previsto pela teoria das cordas;  novas reformas essenciais na área da investigação experimental e laboratorial; mudanças dramáticas na estrutura da Física actual.  A prova da existência do gravitão prevista na teoria das cordas continua um mistério, mas é encarado como um trabalho em progresso e uma experiência de alto significado para a realização não apenas da teoria das cordas, como para toda a Ciência e conhecimento do universo.

Por mais promissora que seja a Teoria das Cordas, ainda se considera incerta, num estado embrionário, digamos. Muitos físicos ponderam se as suas investigações e cálculos são produto de uma matemática fantasiada ou descrevem em concreto o mundo real.

Porque apesar de todos estes significativos avanços e contributos, prestados pelas melhores mentes da Física actual, tudo se resume a comprovar pelo método de obervação e experimental. Algo que se recusa a acontecer com menos intensidade que a ansiedade de quem se apaixona por esta teoria.

Aos Ombros de Gigantes

Para começar o ano vou falar um bocado de um livro que comprei há pouco tempo: Aos Ombros de Gigantes (curiosamente a FNAC parece pensar que o título do livro é Aos Ombros dos Gigantes). O livro é coligido e comentado por Stephen Hawking (recentemente completou 70 anos) e pretende ser uma colecta de textos de Física e Astronomia que revolucionaram as ciências de onde brotaram assim como o mundo do qual faziam parte estes homens.

Olhando para o índice é mais do que claro que a selecção de textos é mesmo muito boa, mas sentimos que falta alguém muito importante na escolha destes gigantes.

 

Seja como for, talvez seja importante saber um bocado da história do título deste livro: é uma das frases mais conhecidas na história das ciências e como tal está sujeita a vários tipos de enganos e más interpretações.

Tanto quanto sei a primeira aparição desta ideia remonta ao século XII e a pessoa por detrás da versão original do aforismo “nanos gigantium humeris insidentes”, qualquer coisa como anões apoiados nos ombros de gigantes, é Bernardo de Chartres. Um filósofo natural seguidor das correntes neo-platónicas.

Ao longo dos tempos várias pessoas repetiram esta ideia para exprimir o evidente facto que o progresso científico ocorre de uma forma gradual durante largos períodos de tempo e que toda uma comunidade de pessoas (e a meu ver são os grupos que compõem esta comunidade que são os verdadeiros gigantes) dá o seu contributo.

 

 

A pessoa mais famosa de todas a dizer isto é Newton (Carlos Fiolhais parece pensar que Newton é a primeira pessoa a exprimir esse sentimento) quando numa carta a Robert Hooke diz o seguinte, citando o nome de Descartes (o tal gigante que está em falta):

What Descartes did was a good step. You have added much several ways, and especially in taking the colours of thin plates into philosophical consideration. If I have seen a little further it is by standing on the shoulders of Giants.

Os cientistas cujos textos foram escolhidos por Hawking são:

  • Nicolau Copérnico com o As Revoluções das Orbes Celestes (Livro I).
  • Galileu Galilei com Diálogo sobre Duas Novas Ciências.
  • Johannes Kepler com o Harmonias do Mundo (Livro V).
  • Isaac Newton com Princípios Matemáticos da Filosofia Natural.
  • Albert Einstein com O Princípio da Relatividade.

 

Neutrinos com velocidades acima de c

O CERN Press release enviou um email hoje aos membros dizendo que a OPERA, uma experiência concebida para medir a velocidade de neutrinos enviados do CERN (Geneva, Suiça) para Gran Sasso (Italia), juntamente com a distancia entre os dois laboratórios. Com as medidas efectuadas os neutrinos apresentam velocidades superiores á da luz. Esta noticia foi avançada aos utilizadores do CERN, embora se encontre de já no archive um artigo sobre o assunto –http://arxiv.org/abs/1109.4897v1.

Espero transmitir a informação em primeira mão e que este blogue continue a trazer a física a quem a procura.

Quero contudo afirmar que pessoalmente não tenho muita confiança em medidas com esta precisão e erro a darem resultados deste género, mas deixo a cada um ler e interpretar os resultados do archive. De qualquer forma são passos destes que disturbam as nossas crenças, abrindo caminho a nova física, aleluia irmãos!

Mecânica Quântica

Uma lecture de Sidney Coleman sobre Mecânica Quântica, sem tempo para disparates e baboseiras.

Quantum Mechanics in your face.

Mesmo que não se concorde com tudo o que o Coleman diz é um prazer presenciar a clareza com que ele introduz os conceitos e desenvolve as suas consequências lógicas.

Estatística Quântica

No seguimento de um post anterior em que falei um pouco sobre alguns assuntos de Física Estatística venho agora deixar alguns comentários iniciais sobre Estatística Quântica.

Não pretendo dar a ilusão que este post será a palavra final sobre este assunto, até porque me vou debruçar sobre ele no futuro, mas é um início e pode ser que este rascunho que escrevi sejam úteis a alguém. Para além disso aproveito e dou algum movimento ao blog.

Já há algum tempo que não olho para este texto, por isso espero que existam algumas gralhas, no entanto no futuro vou escrever uma série de posts cujo objectivo será fazer uma fundamentação de algumas teorias físicas (como fiz no post Fundamentos da Mecânica Clássica – post que será reescrito e aumentado) e nessa altura já escreverei algo de mais completo e definitivo sobre Física Estatística Quântica e Física Estatística Clássica.

Acho que por agora já chega de desculpas e explicações por isso deixo-vos com o texto.

— 1. Gás Perfeito Quântico —

Um gás perfeito é um gás cuja partículas constituintes interagem somente por meio de colisões. Um gás quântico é um gás cujas partículas constituintes obedecem ao formalismo da Mecânica Quântica. Quer isto dizer que os estados acessíveis ao gás não formam uma distribuição contínua mas sim discreta, que as partículas são indistinguíveis entre si e que os números de ocupação para cada estado não são arbitrários.

Uma vez que os estados são discretos é sempre possível fazer uma organização dos mesmos {\epsilon_1\leq \epsilon_2\leq \epsilon_3\leq\dots\epsilon_r\leq\dots} e os números de ocupação são {n_1\leq n_2\leq n_3\leq\dots n_r\leq\dots}

Ora estes números de ocupação não são arbitrários, como já atrás foi dito, e para o caso dos bosões podem tomar valores arbitrários mas para o caso dos fermiões só podem tomar os valores de {0} ou {1}. Quer isto dizer que enquanto para os bosões podemos ter um qualquer número de partículas no mesmo estado quântico para os fermiões podemos ter no máximo uma única partícula num dado estado quântico. Ler mais deste artigo

O que tenho andado a ler

Sugestões de leitura

Lembrei-me da página How to be a GOOD theoretical physicist do Gerard ‘t Hooft que contém uma data de excelentes conselhos (não só) para aqueles que querem ser físicos teóricos e que têm um genuíno desejo de trabalhar para o ser.

No espírito desta página quero também deixar alguns recursos que considero serem úteis para todos aqueles que querem saber um pouco mais de Física:

  1. Mechanics and Special Relativity.
  2. Field Theory in Particle Physics.
  3. Introduction to Quantum Field Theory.
  4. Warren Siegel tem estes dois bons livros Fields e Introduction to string field theory.
  5. Quantum Field Theory pelo Mark Srednicki.

Infelizmente recursos de qualidade só os conheço em inglês mas se por acaso conhecerem bons recursos em português que estejam disponíveis na web é só dá-los a conhecer nos comentários.

E se esses recursos forem de outras áreas da Física melhor ainda!

Ps: Estas duas lecture notes sobre Física Quântica também são muito boas:

  1. Lecture Notes in Quantum Mechanics por Doron Cohen.
  2. Quantum Mechanics por Martin Plenio.
%d bloggers like this: